Topology Preserving Domain Adaptation for Addressing Subject Based Variability in SEMG Signal

نویسندگان

  • Rita Chattopadhyay
  • Narayanan Chatapuram Krishnan
  • Sethuraman Panchanathan
چکیده

A subject independent computational framework is one which does not require to be calibrated by the specific subject data to be ready to be used on the subject. The greatest challenge in developing such a framework is the variation in parameters across subjects which is termed as subject based variability. Spectral and amplitude variations in surface myoelectric signals (SEMG) are analyzed to determine the fatigue state of a muscle. But variations in the spectrum and magnitude of myoelectric signals across subjects cause variations in both marginal and conditional probability distributions in the features extracted across subjects, making it difficult to model the signal for any automated signal classification. However we observe that the manifold of the multidimensional SEMG data have an inherent similarity as the physiological state moves from no fatigue to fatigue state. In this paper we exploit this specific feature of the SEMG data and propose a domain adaptation technique that is based on intrinsic manifold of the data preserved in a low dimensional space, thus reducing the marginal probability differences between the subjects, followed by an instance selection methodology, based on similar conditional probabilities in the mapped domain. The proposed method provides significant improvement in subject independent accuracies compared to cases without any domain adaptation methods and also compared to other state-of-the-art domain adaptation methodologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transfer Learning Framework for Early Detection of Fatigue Using Non-invasive Surface Electromyogram Signals (SEMG)

Amulti source domain adaptation based learning for addressing subject based variability in myoelectric signals (SEMG), enabling generalized framework for detecting

متن کامل

A Multi-Source Domain Adaptation and Its Application to Early Detection of Fatigue

We consider the characterization of muscle fatigue through noninvasive sensing mechanism such as surface electromyography (SEMG). While changes in the properties of SEMG signals with respect to muscle fatigue have been reported in the literature, the large variation in these signals across different individuals makes the task of modeling and classification of SEMG signals challenging. Indeed, t...

متن کامل

Complex feature analysis of center of pressure signal for age-related subject classification

Purpose: The aim of this study was to characterize prolonged standing and its effect on postural control in elderly individuals in comparison to adults.Materials and Methods: The elderly individuals’ behavior during standing and how demanding such a task is for them, is still unknown. We recorded the center of pressure (COP) position of 12 elder and 15 young participants while they were standin...

متن کامل

Surface EMG-Based Inter-Session Gesture Recognition Enhanced by Deep Domain Adaptation

High-density surface electromyography (HD-sEMG) is to record muscles' electrical activity from a restricted area of the skin by using two dimensional arrays of closely spaced electrodes. This technique allows the analysis and modelling of sEMG signals in both the temporal and spatial domains, leading to new possibilities for studying next-generation muscle-computer interfaces (MCIs). sEMG-based...

متن کامل

Detecting and Predicting Muscle Fatigue during Typing By SEMG Signal Processing and Artificial Neural Networks

Introduction: Repetitive strain injuries are one of the most prevalent problems in occupational diseases. Repetition, vibration and bad postures of the extremities are physical risk factors related to work that can cause chronic musculoskeletal disorders. Repetitive work on a computer with low level contraction requires the posture to be maintained for a long time, which can cause muscle fatigu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011